
03.11.2013 | TU Darmstadt | Security Engineering |
André Schaller & Vincent van der Leest

Bootloader Protection Using
Inherent PUFs

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 2

Agenda

§ Motivation

§ Proposed Solution

§ Research Objectives

§ Demonstration

Motivation

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 3

§ Rapidly increasing number of lightweight / low-power computing devices

§ Mobile embedded devices, Machine-to-Machine (M2M) communications, internet of things, sensor nodes,
Car-2-X communication, pervasive / ubiquitous computing, ...

Motivation

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 4

§ How to protect these devices from firmware manipulations?

§ Software-based approaches (ARM TrustZone, AMD SVM, Intel TXT)

§ Must be supported by underlying hardware platform

§ Approaches often rely on kernelized architectures (secure microkernel)

§ Many microkernel require modification of user space applications

§ Hardware-based approaches (TPM chips)

§ Discrete, physical chips additional manufacturing costs

§ Additional hardware security chips not possible for low-end devices

Proposed Solution
General Idea

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 5

§ We do not need extra chips to provide hardware-based security!

§ Let‘s exploit hardware which is on-board anyway

§ Almost any computing device holds static RAM (SRAM)

§ Use start-up values of SRAM to extract fingerprint of corresponding hardware instance [1]

§ Use the extracted fingerprint to derive a cryptographic key

§ Modified bootloader in turn decrypts firmware using this key

§ Actually this binds the firmware to the hardware

[1] - D. Holcomb: „Power-Up SRAM State as in Identifying Fingerprint and Source of True Random Numbers“

Proposed Solution
General Idea

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 6

§ Bootloader reads SRAM start-up values & extracts fingerprint

§ Fingerprint is used to derive cryptographic key K

§ K is used to decrypt firmware; successful if:

§ a) correct key K derived

§ b) correct firmware image present

§ Firmware is called

§ Security properties:

§ Integrity of firmware

§ Confidentiality of firmware

§ Authenticity of hardware

§ Use of epheremal key reduced attack surface

Proposed Solution
Goal & Research Objectives

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 7

§ Approach is known for IP protection on FPGAs (with dedicated hardware)

Goal: Port the approach to COTS devices to provide an platform instrinsic hardware-based anchor-of-trust.
Motivation to implement it on virtually any commercial computing device.

§ Research objectives:

1.Can we find PUF instances in COTS microprocessors?

2.Can we extract a fingerprint to derive a key?

3.Implementation feasible for lightweight devices with small memory (32 - 128 kByte on-chip memory)?

PUF Instances
Can we find PUF instances in COTS microprocessors - I

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 8

§ Which wide-spread microprocessors to choose?

§ ARM Cortex A/M family: widely-used 32-bit embedded MCU for lightweight (M) and powerful (A) devices

§ Cortex-Mx: optimized for cost and power sensitive

§ Cortex-Ax: high-performance applications processors

§ Firstly, focus on simple Cortex-Mx MCUs:

§ Cortex-M3 (STM32 F100 Value Line)

§ 24 MHz, 128 KB Flash, 8 KB RAM

§ Easy access to SRAM to get a first impression

PUF Instances
Can we find PUF instances in COTS microprocessors - I

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 9

§ Modified startup files access to SRAM start-up values

§ Statistical analysis revealed useful PUF characteristics

§ max. within-class Hamming distance (HD) = 6.23% (ideal HD: close to 0%)

§ min. Hamming Weight (HW) = 46.28 % (ideal HW: GD around 50%)

§ min. between-class Hamming distance (HD) = 49.08 % (ideal between-class HD: GD 50%)
Results STM32F100RB RST/Results STM32F100RB RST STM32F100RB SRAM 130215 1231

2013 Feb 15 - 12:32

2

Results STM32F100RB RST/Results STM32F100RB RST STM32F100RB SRAM 130215 1231
2013 Feb 15 - 12:32

4

Results STM32F100RB RST/Results STM32F100RB RST STM32F100RB SRAM 130215 1231
2013 Feb 15 - 12:32

4

§ Move on to more complex hardware ...

§ PandaBoard (ES): ARM-based OMAP44xx System-on-a-Chip (SoC) platform

§ 2x Cortex-A9, 2x Cortex-M3

§ 1 GB external DDR memory

§ Several on-chip-memory (OCM) instances

§ Onboard 10/100 Ethernet

§ 802.11 b/g/n WiFi

§ 1080p Full-HD video encoding/decoding

§ SD/MMC card cage

§ ...

§ Full-grown modern smartphone / tablet platform

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 10

1st stage bootloader
§ hard-coded in ROM

§ can not be access / disabled

§ probably initializes processors

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 11

§ Object of interest: on-chip-memory instances:

§ OCM Save-and-Restore (SAR) ROM (4 KB)

§ OCM Save-and-Restore (SAR) RAM (8KB)

§ OCM Level 3 RAM (56 KB)

§ Access to start-up values by modifying the bootloader (u-boot)

§ Staged boot process

2nd stage bootloader (SPL)
§ tiny part of u-boot

§ sets up stack, configures external
memory and other components

§ must fit in OCM L3 RAM

3rd stage bootloader (u-boot.img)
§ main part of u-boot

§ provides rich functionality to
manipulate and configure hardware

§ eventually calls OS kernel

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 12

§ Successfully extracted start-up values with modified 2nd stage bootloader (SPL)

§ However, bitmapping these values revealed this picture ...

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 12

§ Successfully extracted start-up values with modified 2nd stage bootloader (SPL)

§ However, bitmapping these values revealed this picture ...

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 13

§ Statistical analysis of first 13 KB OCM L3 RAM (5 Pandaboards, 1000 trials)

§ max. within-class Hamming distance = 4.67% (ideal: close to 0%)

§ min. Hamming Weight = 48.53 % (ideal: 50%)

§ min. between-class Hamming distance = 49.66 % (ideal: 50%)

PUF Instances
Can we find PUF instances in COTS microprocessors - II

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 13

§ Statistical analysis of first 13 KB OCM L3 RAM (5 Pandaboards, 1000 trials)

§ max. within-class Hamming distance = 4.67% (ideal: close to 0%)

§ min. Hamming Weight = 48.53 % (ideal: 50%)

§ min. between-class Hamming distance = 49.66 % (ideal: 50%)

§ Even better results as for the STM32!

§ To derive a cryptographic key, we need a 100% stable fingerprint

§ Within-class Hamming distance = noise = 5%

§ Can be handled by Fuzzy Extractor algorithm (Code Offset Method)

§ Combination of 2 linear codes: Golay(24, 12, 7) + repetition code (r = 15)

§ False Positive Rate of almost 10-8

Fingerprint Extraction
Can we extract a fingerprint to derive a stable key?

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 14

§ Actually Pandaboard is not a lightweight device

§ However, memory requirements are the same - actually they are even stronger:

§ Memory of lightweight / low-power devices usually between 32 - 128 KB

§ Here: only 13 KB!

§ 2 phases of application scenario:

Implementation
... feasible for lightweight devices?

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 15

Enrollment (at manufacturer site):

1.Define device-specific key K

2.Read reference SRAM measurement M

3.Create Helper Data W

 W = FuzzyExtractor(K) ⊕ M
4.Encrypt 3rd stage bootloader B with K:

 Benc = EncK(B)

5.Store W and Benc on MMC

Reconstruction (at costumer site):

1.Read SRAM measurement M‘

2.Read Helper Data W from MMC

3.Reconstruct key: K = Fuzzy Extractor(M‘ ⊕ W)

4.Decrypt 3rd stage bootloader Benc with K:
B = DecK(Benc)

5.Call B

Questions / Discussion

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 16

Demonstration

Questions / Discussion

03.11.2013 | TU Darmstadt | Security Engineering | André Schaller & Vincent van der Leest | 17

