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PUF Design vs. Typical Digital Design	



Identically designed, but  
different due to variations 

IN OUT 

•  PUFs amplify electrical differences in two nominally identical circuits 
•  The difference is NOT inherent in the design 

•  Due to random process variations 

Digital Design PUF Design 

OUT depends on device variations? ✗ ✓ 
OUT is a predictable function of IN? ✓ ✗ 

2 



wl

Column mux
we we

data data
Mwr

Mp1 Mp2

Mn1 Mn2

Ms1 Ms2

Mmux

1 2

• Nothing is deterministic anymore 
• Everything is statistical 

Line Edge Roughness 

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002 

Random Dopant 
Fluctuations 

Gate Oxide Variation 

SiO2
Gate

Source Drain

SiO2
Gate

Source Drain

Momose et al, IEEE Trans. Electron Devices, 45(3), 1998 

Sources of Variability 
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PUF Design Goals	



•  Randomness	


•  PUF cannot be modeled 	



•  Uniqueness	


•  Across different dies of same design	



•  Reliability	


•  Across environmental variations, ambient 

noise, aging	
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•  Randomness	


•  PUF cannot be modeled 	



•  Uniqueness	


•  Across different dies of same design	



•  Reliability	


•  Across environmental variations, ambient 

noise, aging	





• Delay based PUF 
•  Arbiter PUF1 (2002) 
•  Ring oscillator PUF2 (2007) 

• Bi-stable element based PUF 
•  SRAM power-up state PUF3 (2008) 
•  Sense amplifier PUF4 (2010) 

1.  B.	
  Gassend	
  et	
  al.,	
  Concurrency	
  and	
  Computa7on:	
  Prac7ce	
  and	
  Experience,	
  2004.	
  	
  
2.  G.	
  E.	
  Suh	
  et	
  al.,	
  ACM/IEEE	
  Design	
  Automa?on	
  Conference,	
  2007.	
  
3.  Guajardo	
  et	
  al.,	
  CHES	
  2007	
  |	
  D.	
  E.	
  Holcomb	
  et	
  al.,	
  RFIDSec	
  2007	
  
4.  M.	
  Bhargava	
  et	
  al.,	
  IEEE	
  Interna?onal	
  Symposium	
  on	
  Hardware-­‐Oriented	
  Security	
  and	
  Trust	
  (HOST),	
  2010.	
  

PUF Implementations	
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Arbiter PUF	
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Ring Oscillator PUF	
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Response bit 

Challenge[1:N] 

Scrambler 
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Bi-Stable PUFs	
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Sense Amplifiers 
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PUF Comparison Testchip	
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4 PUF implementations	



•  Arbiter 	



•  Ring oscillators 	



•  SRAM 	



•  Sense amplifier	



[Bhargava CICC 2012] 
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Comparison: Randomness	
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Comparison: Randomness	
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Comparison: Randomness	
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Comparison: Randomness	



NIST tests on bi-stable PUFs	
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Comparison: Randomness	



NIST tests on delay based PUFs	
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Comparison: Uniqueness	
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Temperature  
Controlled  
Chamber 

Reliability Measurement	



•  Chips and board placed in 
temperature controlled 
chamber	



•  -20°C to 85°C	


•  1.0V to 1.4V (1.2V nominal)	


•  Any response bit that flips is 

marked as erroneous 
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Comparison: Reliability	
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Voltages  : 1.0V, 1.2V,  1.4V 
Temperatures  : -200C, 270C, 850C 
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Comparison: Delay	



RO 112µs 

Arbiter 16ns 

SRAM < 1ns 

SA-SA < 1ns 

SA-Latch < 1ns 
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     Delay to Generate a Response Bit      

D
el

ay
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RO  Arbiter SRAM SA-SA SA-Latch 
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Comparison: Energy	
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     Energy to Generate a Response Bit      

RO 23nJ 

Arbiter 0.6pJ 

SRAM 0.07pJ 

SA-SA 0.10pJ 

SA-Latch 0.09pJ 

RO  Arbiter SRAM SA-SA SA-Latch 

En
er

gy
(fJ
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Comparison: Area	



RO 1475µm2 

Arbiter 3500µm2 

SRAM 2.6µm2 

SA-SA 3.6µm2 

SA-Latch 2.9µm2 

27 

*Amortizes when same chain is re-used (using a different challenge), but at the cost of delay (and area). However, multiple studies have 
concluded that arbiter PUF is vulnerable to modeling attacks by eavesdropping on several challenge-response pairs (CRPs). 

     Area to Generate a Response Bit *     

RO  Arbiter SRAM SA-SA SA-Latch 
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PUF Comparison Summary	
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Security Metrics	

 VLSI Metrics	



Rand	

 Uniq	

 Reliab	

 Area	

 Delay	

 Energy	



Arbiter	

 ✓ ✓ ✗ ✗  ✗ ✗ 
RO	

 ✓ ✓ ✗ ✗ ✗ ✗ 

SRAM 	

 ✓ ✓ ✗ ✓ ✓ ✓ 
SA	

 ✓ ✓ ✗ ✓ ✓ ✓ 



Reliability Enhancement Options	
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Dodis et al, 2004 
Guajardo et al., 2007 

Bosch et al., 2008 
Maes et al., 2009 

Yu et al., 2010 
Yu et al., 2011 

Paral et al., 2011 
Leest et al., 2012 
Maes et al., 2012 

 



•  Significant overheads 	


•  Delay, power, and area	


•  Complexity scale quickly with 

number of correctable errors	


•  For BER=15%, need 20-80 response 

bits/key bit	



Conventional Solution: Error Correction Codes	



Enrollment 

In-field 

R1 

R2 

R1 ≠ R2 

• Requires helper data 	


•  Can leak information 	



• Decode incurs delay	


•  Often thousands of cycles	



•  Micro- or milli-second timescales	
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Error Reduction Techniques	



	



Extrinsic Techniques	



•  Multiple Evaluation (ME)	



•  Activation Control (AC)	



Intrinsic Techniques	



•  Post-Silicon Selection (PSS)	



•  Response Reinforcement (RR)	
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Up to 70-80% reduction 
in errors 

~ 100% reduction 
in errors 

[Bhargava HOST 2012] 
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Multiple Evaluations (ME)	



• Multiple Evaluations done 1-1000 times 
•  Final bit value based on majority voting 

•  Errors reduce, but at the cost of increased evaluation time 

32 
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ME in SRAM and SA PUF	
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•  Multiple evaluations at a single operating point 
•  Majority vote to decide final result 
•  Trades-off energy and delay for reliability 

SRAM Array Bitmap Sense Amplifier Array Bitmap 

Squares represents % times a bit evaluated to ‘1’ across multiple evaluations.  
White ⇒ ‘always 1’. Black ⇒ ‘always 0’. For the rest, the greyscale value indicates the relative ratio of  ‘1’ and ‘0’. 
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ME Results	
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•  Activation Control  
•  SRAM: VDD ramp 
•  Sense Amplifier: Sense enable ramp 

•  Slow ramps result in more reliable SRAM PUFs 
•  Ramp rate variation from golden results in more errors 
•  Tight control of activation control required for high reliability  

Activation Control (AC)	
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AC (SRAM) Results	



Reliability of an SRAM as a function of VDD ramp rate, but when the golden values were generated at a given ramp rate. 
The reference ramps are chosen at (a) 0.8ms, (b) 3ms, (c) 40ms, and (d) 25s 
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Post-Silicon Selection (PSS)	
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✗ ✓ ✓ ✓ ✗ ✓ 

1 1 0 1 0 1 Reliability Bitmap 

Enrollment
:  
Sent off-chip  

In-Field:  
Loaded from  
off-chip  

R1 R2 R3 R4 
Response bits 

(66% PUF cores used)   
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PSS: Reliability Estimation	



•  Direct estimation of reliability	


•  Extensive evaluations at multiple voltage-temperature corners and 

noise scenarios	



•  High tester time, no insights of the safety margin in selected bits	



•  Indirect estimation of reliability	


•  “Soft”-information from PUF elements correlated with reliability	



•  Use SA offset voltage to estimate reliability	
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Comparison: Reliability	
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Comparison: Reliability	
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Comparison: Reliability	
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Reliability vs. Area Tradeoff for SAs	
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PSS: Reliability Measurements Across V/T	
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10,000 measurements each at all 9 voltage & temperature combinations 
Voltages : 1.0V, 1.2V, 1.4V   Temperatures = -200C, 270C, 850C  

Worst case 
corner 
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PSS: Large-Scale Reliability Measurements	



•  Large-scale measurements	


•  180k at worst case: 1.0V 850C	



•  100k at nominal: 1.2V 270C	



•  No errors in 1213 (29.6%) selected SAs with ∆VIN = 60mV	



•  Bit error rate < 4.6 * 10-9	


•  128-bit key error rate < 0.6 * 10-6	



•  Key error rate < 10-6 : typical target in ECC papers 	
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PSS: Large Scale Test Results	
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Response Reinforcement	



Response reinforcement	



•  Increase the baseline reliability of the PUF core circuit	



•  Post-manufacturing amplification of random variations	



•  Minimize or eliminate the need for ECC	



•  No helper data	



Implementation	



•  Measure PUF “golden” response	



•  Reinforce golden response using directed accelerated aging	



•  Artificially induce IC aging phenomena to amplify PUF circuit 
random variation for increased reliability	
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Response Reinforcement Concept	
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PD
F 

Electrical Characteristic 

•  Can improve PUF reliability by increasing variability	



•  Optimal distribution is bi-modal	



= 0 

= 1 
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Integrated Circuit Aging Phenomena	



Many IC aging effects	


•  Negative Bias Temperature Instability (NBTI)	


•  Time Dependent Dielectric Breakdown (TDDB)	


•  Metal electro-migration (EM)	


•  Hot Carrier Injection (HCI)	



Desired characteristics	


•  Easy to artificially induce	


•  Short reinforcement time	


•  Strong reinforcement effect	


•  High permanence	
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Integrated Circuit Aging Phenomena	



Many IC aging effects	


•  Negative Bias Temperature Instability (NBTI)	


•  Time Dependent Dielectric Breakdown (TDDB)	


•  Metal electro-migration (EM)	


•  Hot Carrier Injection (HCI)	



Desired characteristics	


•  Easy to artificially induce	


•  Short reinforcement time	


•  Strong reinforcement effect	


•  High permanence	



Only need a raised voltage ~3V	


~10s reinforcement (one time)	



Shifts transistor VTH by >50mV	



Effect lasts for years	



[Bhargava HOST 2012] 

[Bhargava CHES 2013] 
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Hot Carrier Injection	



High energy electrons 
trapped in oxide 

•  Small increase in VTH if current in same direction 
•  High increase in VTH (~ 100 mV) if current in 

opposite direction 

Concept	
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Hot Carrier Injection Sense Amplifier (HCI-SA)	
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HCI-SA Testchip	


















•  1600 self-reinforcing HCI-SA  
•  1600 manually controlled HCI-SA 
•  Tested across 9 voltage/temperature corners 
•  HCI stress times of 1s, 5s, 25s, 125s 
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HCI-SA Offset Shift	
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HCI-SA Offset Shift	
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HCI-SA Reliability Measurements	



100 runs at all 9 voltage/temperature corners 
à No errors found after stress of 125 seconds 
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HCI-SA: Permanence of Offset Shift	



Baked chips at 1.5V and 1000C	


•  18 hours è 0.33 years	



•  93 hours è 1.7 years	
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Large-Scale Reliability Measurements	



Measured 125k evaluations (125s HCI stress)	



•  At nominal corner (1.2V 270C)	



•  At worst case corner (1.0V -200C) 	



•  No errors observed in any of the 1600 HCI-Sas	



 

•  Bit error rate BER < 5 * 10-9 	



•  Key error rate KER < 0.6 * 10-6 (128-bit)	



•  KER target < 10-6 for reliable key generation	
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HCI Response Reinforcement Summary	



HCI-SA PUF 
•  Reliable – BER < 5 * 10-9 without ECC 
•  Secure – No helper data  
•  Fast – Response generation in 1 cycle (~1ns) 
•  Simple – One-time short reinforcement step (125s)  
•  High Permanence – Small change after ~2yr simulated aging 

Can use RR on other types of PUFs as well 
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Conclusions	



•  Bi-stable PUFs have significant VLSI advantages	


•  Despite being “weak”	



•  Multiple ways of decreasing error rate using COTS SRAM	


•  Before using ECC / fuzzy extractors	



•  With custom PUF core can significantly reduce error rate	


•  Minimal (or no?) ECC / fuzzy extractors / helper data needed	
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Parting Thought: Response Reinforcement Redux	
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PD
F 

Electrical Characteristic 

•  Can improve PUF reliability by increasing variability	



•  Optimal distribution is bi-modal	



= 0 

= 1 
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Parting Thought: Through the Looking Glass	



•  How different is a PUF from a non-volatile memory?	



•  Trade-off between PUF robustness and security	
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PD
F 

Electrical Characteristic NAND Flash cell voltage distribution 
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