

Reliable Efficient Silicon PUF Design

Ken Mai Electrical and Computer Engineering Carnegie Mellon University

PUF Design vs. Typical Digital Design

Identically designed, but different due to variations

	Digital Design	PUF Design
OUT depends on device variations?		
OUT is a predictable function of IN?		

- PUFs amplify electrical differences in two nominally identical circuits
- The difference is NOT inherent in the design
 - Due to random process variations

Sources of Variability

- Nothing is deterministic anymore
- Everything is statistical

Electrical & Computer

Random Dopant

Carnegie Mellon

Carnegie Mellon

Carnegie Mellon

PUF Design Goals

Randomness

- PUF cannot be modeled
- Uniqueness
 - Across different dies of same design
- Reliability
 - Across environmental variations, ambient noise, aging

PUF Design Goals

- Randomness
 - PUF cannot be modeled
- Uniqueness
 - Across different dies of same design
- Reliability
 - Across environmental variations, ambient noise, aging

PUF Design Goals

- PUF cannot be modeled
- Uniqueness
 - Across different dies of same design

Reliability

Across environmental variations, ambient noise, aging

PUF Implementations

• Delay based PUF

- Arbiter PUF¹ (2002)
- Ring oscillator PUF² (2007)

Bi-stable element based PUF

- SRAM power-up state PUF³ (2008)
- Sense amplifier PUF⁴ (2010)
- 1. B. Gassend et al., *Concurrency and Computation: Practice and Experience*, 2004.
- 2. G. E. Suh et al., ACM/IEEE Design Automation Conference, 2007.
- 3. Guajardo et al., CHES 2007 | D. E. Holcomb et al., RFIDSec 2007
- 4. M. Bhargava et al., IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 2010.

Arbiter PUF

Ring Oscillator PUF

Bi-Stable PUFs

PUF Comparison Testchip

- 4 PUF implementations
- Arbiter
- Ring oscillators
- SRAM
- Sense amplifier

Carnegie Mellon

[Bhargava CICC 2012] 16

PUF Types \Rightarrow SRAM				SA-S					SA-L					
Total Samples (N) \Rightarrow 28672				8192					8192					
		← #	$\leftarrow \text{\# Sequences (m)} \rightarrow$			← #	$\leftarrow \text{\# Sequences (m)} \rightarrow$			$\leftarrow \text{\# Sequences (m)} \rightarrow$				
Test	n _{min}	m_{total}	m_{min}	m_{pass}	pass?	' m _{total}	m_{min}	m_{pass}	pass?	m_{total}	m_{min}	m_{pass}	pass?)
Freq	100	286	278	284		81	77	77		81	77	77		
Block Freq	100	286	278	282	~	81	77	81		81	77	80		
Cusums (f)	100	286	278	286	~	81	77	79	~	81	77	77	~	
Cusums (b)	100	286	278	286	~	81	77	78	~	81	77	79	~	
Runs	100	286	278	284	~	81	77	80	~	81	77	81	~	
Entropy	100	286	278	286	~	81	77	80	~	81	77	80	~	
Longest Run	128	224	217	222	~	64	60	62	~	64	60	64	~	
Spectral	1000	28	26	27	\~/	8	7	8		8	7	8	\ ~ /	
					$\neg \bigtriangledown$				$\neg \bigtriangledown$				$\neg \bigtriangledown$	-

NIST tests on bi-stable PUFs

PUF 1	•	Art	oiter		Ring Oscillator					
Total Sample		47	04		11873					
		← #	Seque	nces (r	n) \rightarrow	$\leftarrow \text{\# Sequences (m)} \rightarrow$				
Test	n_{min}	m_{total}	m_{min}	m_{pass}	pass?	° m _{total}	m_{min}	m_{pass}	pass?	
Freq	100	47	44	46		118	113	118		
Block Freq	100	47	44	47	~	118	113	118	~	
Cusums (f)	100	47	44	46	~	118	113	118	~	
Cusums (b)	100	47	44	47	~	118	113	118	~	
Runs	100	47	44	47	~	118	113	116	~	
Entropy	100	47	44	47	~	118	113	118	~	
Longest Run	128	36	33	36	~	92	88	91		
Spectral	1000	4	3	4		11	9	11		

NIST tests on delay based PUFs

Comparison: Uniqueness

Carnegie Mellon

Reliability Measurement

- Chips and board placed in temperature controlled chamber
- -20°C to 85°C
- 1.0V to 1.4V (1.2V nominal)
- Any response bit that flips is marked as erroneous

Electrical & Computer

Carnegie Mellon

24

Comparison: Delay

Comparison: Energy

Comparison: Area

*Amortizes when same chain is re-used (using a different challenge), but at the cost of delay (and area). However, multiple studies have concluded that arbiter PUF is vulnerable to modeling attacks by eavesdropping on several challenge-response pairs (CRPs).

PUF Comparison Summary

	Sec	curity Me	trics	VLSI Metrics					
	Rand	Uniq	Reliab	Area	Delay	Energy			
Arbiter	>	1	×	×	×	×			
RO		1	×	×	×	×			
SRAM	>	1	X						
SA	>	1	X		1	\checkmark			
			X						
C <mark>arnegie Mello</mark> n	1			er G		28			

Reliability Enhancement Options

Dodis et al, 2004 Guajardo et al., 2007 Bosch et al., 2008 Maes et al., 2009 Yu et al., 2010 Yu et al., 2011 Paral et al., 2011 Leest et al., 2012 Maes et al., 2012

Conventional Solution: Error Correction Codes

Significant overheads

- Delay, power, and area
- Complexity scale quickly with number of correctable errors
- For BER=15%, need 20-80 response bits/key bit

- Requires helper data
 - Can leak information
- Decode incurs delay
 - Often thousands of cycles
 - Micro- or milli-second timescales

Error Reduction Techniques

Multiple Evaluations (ME)

- Multiple Evaluations done 1-1000 times
 - Final bit value based on majority voting
- Errors reduce, but at the cost of increased evaluation time

ME in SRAM and SA PUF

SRAM Array Bitmap

Sense Amplifier Array Bitmap

Squares represents % times a bit evaluated to '1' across multiple evaluations. White \Rightarrow 'always 1'. Black \Rightarrow 'always 0'. For the rest, the greyscale value indicates the relative ratio of '1' and '0'.

- Multiple evaluations at a single operating point
- Majority vote to decide final result
- Trades-off energy and delay for reliability

ME Results

Activation Control (AC)

Activation Control

- SRAM: VDD ramp
- Sense Amplifier: Sense enable ramp

Slow ramps result in more reliable SRAM PUFs

- Ramp rate variation from golden results in more errors
- Tight control of activation control required for high reliability

Reliability of an SRAM as a function of VDD ramp rate, but when the golden values were generated at a given ramp rate. The reference ramps are chosen at (a) 0.8ms, (b) 3ms, (c) 40ms, and (d) 25s

Carnegie Mellon

Post-Silicon Selection (PSS)

PSS: Reliability Estimation

- Direct estimation of reliability
 - Extensive evaluations at multiple voltage-temperature corners and noise scenarios
 - High tester time, no insights of the safety margin in selected bits
- Indirect estimation of reliability
 - "Soft"-information from PUF elements correlated with reliability
 - Use SA offset voltage to estimate reliability

Carnegie Mellon

Carnegie Mellon

Reliability vs. Area Tradeoff for SAs

42

PSS: Reliability Measurements Across V/T

10,000 measurements each at all 9 voltage & temperature combinations Voltages : 1.0V, 1.2V, 1.4V Temperatures = -20°C, 27°C, 85°C

PSS: Large-Scale Reliability Measurements

- Large-scale measurements
 - 180k at worst case: 1.0V 85°C
 - 100k at nominal: 1.2V 27⁰C
- No errors in I2I3 (29.6%) selected SAs with $\Delta V_{IN} = 60 \text{mV}$
- Bit error rate < 4.6 * 10⁻⁹
 - 128-bit key error rate < 0.6 * 10⁻⁶
- Key error rate < 10⁻⁶ : typical target in ECC papers

PSS: Large Scale Test Results

45

Response Reinforcement

Response reinforcement

- Increase the baseline reliability of the PUF core circuit
- Post-manufacturing amplification of random variations
- Minimize or eliminate the need for ECC
- No helper data

Implementation

- Measure PUF "golden" response
- Reinforce golden response using directed accelerated aging
- Artificially induce IC aging phenomena to amplify PUF circuit random variation for increased reliability

Response Reinforcement Concept

Electrical Characteristic

- Can improve PUF reliability by increasing variability
- Optimal distribution is bi-modal

Integrated Circuit Aging Phenomena

Many IC aging effects

- Negative Bias Temperature Instability (NBTI)
- Time Dependent Dielectric Breakdown (TDDB)
- Metal electro-migration (EM)
- Hot Carrier Injection (HCI)

Desired characteristics

- Easy to artificially induce
- Short reinforcement time
- Strong reinforcement effect
- High permanence

Integrated Circuit Aging Phenomena

Many IC aging effects

- Negative Bias Temperature Instability (NBTI)
- Time Dependent Dielectric Breakdown (TDDB)
- Metal electro-migration (EM)
- Hot Carrier Injection (HCI)

Desired characteristics

- Easy to artificially induce
- Short reinforcement time
- Strong reinforcement effect
- High permanence

Only need a raised voltage $\sim 3V$ ~10s reinforcement (one time) Shifts transistor V_{TH} by >50mV Effect lasts for years

[Bhargava HOST 2012]

[Bhargava CHES 2013]

- Small increase in V_{TH} if current in same direction
- High increase in V_{TH} (~ 100 mV) if current in opposite direction

Hot Carrier Injection Sense Amplifier (HCI-SA)

HCI-SA Testchip

- 1600 self-reinforcing HCI-SA
- I 600 manually controlled HCI-SA
- Tested across 9 voltage/temperature corners
- HCI stress times of 1s, 5s, 25s, 125s

HCI-SA Offset Shift

Carnegie Mellon

HCI-SA Offset Shift

HCI-SA Reliability Measurements

100 runs at all 9 voltage/temperature corners \rightarrow No errors found after stress of 125 seconds

HCI-SA: Permanence of Offset Shift

Carnegie Mellon

56

Large-Scale Reliability Measurements

Measured 125k evaluations (125s HCI stress)

- At nominal corner (I.2V 27°C)
- At worst case corner (1.0V -20°C)
- No errors observed in any of the 1600 HCI-Sas

- Bit error rate BER < 5 * 10⁻⁹
- Key error rate KER < 0.6 * 10⁻⁶ (128-bit)
- KER target < 10⁻⁶ for reliable key generation

HCI Response Reinforcement Summary

HCI-SA PUF

- Reliable BER < 5 * 10⁻⁹ without ECC
- Secure No helper data
- Fast Response generation in I cycle (~Ins)
- Simple One-time short reinforcement step (125s)
- High Permanence Small change after ~2yr simulated aging

Can use RR on other types of PUFs as well

Conclusions

- Bi-stable PUFs have significant VLSI advantages
 - Despite being "weak"
- Multiple ways of decreasing error rate using COTS SRAM
 - Before using ECC / fuzzy extractors
- With custom PUF core can significantly reduce error rate
 - Minimal (or no?) ECC / fuzzy extractors / helper data needed

Parting Thought: Response Reinforcement Redux

Electrical Characteristic

- Can improve PUF reliability by increasing variability
- Optimal distribution is bi-modal

Parting Thought: Through the Looking Glass

- How different is a PUF from a non-volatile memory?
- Trade-off between PUF robustness and security

Acknowledgments

Students

- Mudit Bhargava
- Cagla Cakir
- Mark McCartney
- Craig Teegarden

Funding

- National Science Foundation
- Semiconductor Research Corporation (SRC)
- Carnegie Mellon CyLab

References

- Bhargava, M.; Ken Mai, "A High Reliability PUF Using Hot Carrier Injection Based Response Reinforcement," Workshop on Cryptographic Hardware and Embedded Systems (CHES), 2013.
- Bhargava, M.; Cakir, C.; Ken Mai, "Comparison of bi-stable and delay-based Physical Unclonable Functions from measurements in 65nm bulk CMOS," *Custom Integrated Circuits Conference (CICC)*, 2012 IEEE, vol., no., pp.1,4, 9-12 Sept. 2012.
- Cakir, C.; Bhargava, M.; Ken Mai, "6T SRAM and 3T DRAM data retention and remanence characterization in 65nm bulk CMOS," *Custom Integrated Circuits Conference (CICC)*, 2012 IEEE, vol., no., pp.1,4, 9-12 Sept. 2012.
- Bhargava, M.; Cakir, C.; Ken Mai, "Reliability enhancement of bi-stable PUFs in 65nm bulk CMOS," Hardware-Oriented Security and Trust (HOST), 2012 IEEE International Symposium on , vol., no., pp.25,30, 3-4 June 2012.
- Bhargava, M.; Cakir, C.; Mai, K., "Attack resistant sense amplifier based PUFs (SA-PUF) with deterministic and controllable reliability of PUF responses," *Hardware-Oriented Security and Trust (HOST), 2010 IEEE International Symposium on*, vol., no., pp.106,111, 13-14 June 2010

Thank You

