
Physically unclonable functions found in standard
PC components (PUFFIN)

Daniel J. Bernstein and Tanja Lange
reporting results of the PUFFIN project

http://puffin.eu.org

https://twitter.com/puffin_project

2014.12.12

http://puffin.eu.org
https://twitter.com/puffin_project

Physically Unclonable Functions

I Can uniquely identify electronic components.

I Device-unique "�ngerprints" create root of trust in a hardware
system; derive secret keys from physical properties.

I Protect valuable objects against counterfeiting.

I Typically found in specially designed hardware components.

I Fairly well understood are SRAM PUFs:
I Microscopic manufacturing di�erences in SRAM determine whether a

cell is more likely to hold a 0 or 1 when powered up.
I Many cells are stable across reboots.
I Need to be able to read up uninitialized memory.
I Often found in specially designed hardware components, e.g., FPGA

dongles.

I The same behavior generates true randomness.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 2

http://puffin.eu.org

PUFFIN Mission
Study and show the existence of SRAM PUFs and other types of PUFs in

I PCs,

I laptops,

I mobile phones,

I consumer electronics,

for use as secret keys or trust anchors in mass-market applications.
Show how to use this new root of trust to

I add security for mass-market applications,

I replace or complement the role of a trusted platform module,

I enable security for applications such as broadcast applications,
content protection for the gaming industry,

I secure day-to-day transactions for everyone.

The results of the project will allow for the �rst time an a priori open
platform, the most di�cult element to secure in an
information-technology system today, to inherit security properties from
its own identity and its intrinsic physical properties.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 3

http://puffin.eu.org

Partners

Technische Universiteit Eindhoven, the Netherlands
(Co-ordinator)
• Daniel J. Bernstein, Tanja Lange,
Ruben Niederhagen, Boris Skoric

Intrinsic ID, Netherlands
• Pim Tuyls (scienti�c coordinator), Vincent van der Leest

Katholieke Universiteit Leuven, Belgium
• Bart Preneel, Anthony van Herrewege,
Frederic Vercauteren

Technical University of Darmstadt, Germany
• Stefan Katzenbeisser, André Schaller

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 4

http://puffin.eu.org

Scienti�c Work packages
I WP1: Exploration

I Read out the uninitialized memory of various GPU and CPU types;
I Make a preliminary assessment of the quality of the so obtained data;
I Find identifying properties of mobile devices such as smart phones

that are hard to clone;
I Contingency plan: Consider PUFs on FPGAs as potential add-on.

I WP2: Analysis and quali�cation
I Develop statistical analysis tools and mathematical and probabilistic

models for the quali�cation of potential PUF data from WP1.
I Run the tools: perform such analysis and quali�cation on WP1 data.
I Recommend security parameters to use these PUFs in WP3.

I WP3: Use cases
I Develop hardware-entangled cryptographic primitives that draw their

security directly from physical assumptions of the underlying PUF.
I Develop error correction schemes speci�cally tailored towards the

error characteristics of the PUFs identi�ed in WP1
I Investigate to which extent the PUFFIN PUFs can be used to

implement low-cost alternatives to Trusted Platform Modules.
I Anti-counterfeiting: guarantee the integrity of software or securely

bind software to a particular hardware platform.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 5

http://puffin.eu.org

STM32F100R8 microcontrollers (ARM Cortex-M3)

Custom PCB with several STM32F100R8 microcontrollers
(32-bit ARM Cortex M3) and measurement board.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 6

http://puffin.eu.org

Programming pen

Simplify programming the microcontroller:
Six pogo pins contact the PCB; other end connects via USB to host PC.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 7

http://puffin.eu.org

STM32F100R8

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 8

http://puffin.eu.org

Quali�cation of PUFs

I Want enough stable bits to reconstruct secret.

I Stability is studied relative to one enrollment
measurement.

I If all bits are stable this cannot be related to
physical process but is programmed, so want
some intermediate value.

I Require device identi�cation, i.e., big di�erences between devices.

I To reconstruct enrollment secret use some helper data; usually this
involves linear error correction codes.

I Make sure that helper data does not reveal information about the
secret (e.g. bit 3 is 0).

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 9

http://puffin.eu.org

Secure PRNG Seeding on COTS 1 devices

General idea:

I Collect noisy SRAM bits upon early boot time.

I Overwrite SRAM bits to make it inaccessible during further usage.

I Apply hash function on noisy bits for entropy extraction.

I Use hash output as a seed for a PRNG.

I Use generated bit stream of random numbers for crypto applications.

Embedded SRAM
providing Entropy

Entropy extraction
with Conditioning

Algorithm

Start-Up
Pattern

Seed

Pseudo-Random
Number Generator

PRNG

Random
Bitstream

1COTS: Commercial O�-The-Shelf

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 10

http://puffin.eu.org

Secure PRNG Seeding on COTS Microcontrollers2

I STMicroelectronics STM32F100R8 with
8KiB SRAM.

I Contains enough entropy for TRNG:
minimum 5,5%.

I We need about 1.04KiB to derive
a truly random seed of 256 bits.

However . . .

I Microchip PIC16F1825 with 1 KiB SRAM.

I Startup values exhibit clearly visible
patterns. Prediction attacks!

I Not enough entropy.

2Van Herrewege, van der Leest, Schaller, Katzenbeisser, Verbauwhede, TrustED'13

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 11

http://puffin.eu.org

Light-Weight Secure Boot Implementation for SoCs

I Establish secure boot anchor on
smart phones (link bootloader to
device, stop malware at kernel
level, might also enforce software
license terms).

I PandaBoard has ARM Cortex-A9
(TI OMAP4460).

I PUF source: On-Chip Memory (OCM) L3 SRAM, 56 KiB

I OCM used to hold initializing code → part of the memory cannot be
used as PUF as it is initialized.

I OCM part with good PUF behavior: ca. 12 KiB

I Enough to derive a 256 bit AES key.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 12

http://puffin.eu.org

Light-Weight Secure Boot for SoCs using PUFs3

I Hamming weight: ca. 49

I Max. within-class Hamming
distance: 3.90 %

I Min. between-class Hamming
distance: 50.02 %

I Current implementation needs
675 SRAM bytes

I Golay(23, 12, 7)-Code &
repetition encoding for error
correction

3Schaller, Arul, van der Leest

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 13

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMD64 systems:

1. BIOS (UEFI),

2. boot loader,

3. operating system.

SRAM in AMD64 CPUs:

I General purpose registers.

I Vector registers (XMM): 16 · 128 = 2048 bits (per core).

I Caches.

Registers on OS level: [small kernel patch and module]

I All XMM registers on CPU core 1 contained all 0.

I Some XMM registers on CPU core 0 contained, e.g.
I EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
I EFI_PROCESSOR_PRODUCER_GUID.

I The registers have been initialized/used before the OS was started!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMD64 systems:

1. BIOS (UEFI),

2. boot loader,

3. operating system.

SRAM in AMD64 CPUs:

I General purpose registers.

I Vector registers (XMM): 16 · 128 = 2048 bits (per core).

I Caches.

Registers on OS level: [small kernel patch and module]

I All XMM registers on CPU core 1 contained all 0.

I Some XMM registers on CPU core 0 contained, e.g.
I EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
I EFI_PROCESSOR_PRODUCER_GUID.

I The registers have been initialized/used before the OS was started!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMD64 systems:

1. BIOS (UEFI),

2. boot loader,

3. operating system.

SRAM in AMD64 CPUs:

I General purpose registers.

I Vector registers (XMM): 16 · 128 = 2048 bits (per core).

I Caches.

Registers on OS level: [small kernel patch and module]

I All XMM registers on CPU core 1 contained all 0.

I Some XMM registers on CPU core 0 contained, e.g.
I EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
I EFI_PROCESSOR_PRODUCER_GUID.

I The registers have been initialized/used before the OS was started!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMD64 systems:

1. BIOS (UEFI),

2. boot loader,

3. operating system.

SRAM in AMD64 CPUs:

I General purpose registers.

I Vector registers (XMM): 16 · 128 = 2048 bits (per core).

I Caches.

Registers on OS level: [small kernel patch and module]

I All XMM registers on CPU core 1 contained all 0.

I Some XMM registers on CPU core 0 contained, e.g.
I EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
I EFI_PROCESSOR_PRODUCER_GUID.

I The registers have been initialized/used before the OS was started!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Registers on bootloader level

More serious code changes.

I All XMM registers except xmm0 were 0.

I XMM register xmm0 contained the same data on each boot, though
di�erent data for di�erent test machines.

I The data turned out to be some �ll-pattern of the BIOS code or
some CPUID depending on the test machine.

I The registers have been initialized/used before the OS was started!

Try registers on BIOS level:

I Need to use Coreboot to access BIOS code.

I Only speci�c main boards are supported out-of-the-box.

I Read XMM registers as early as possible (before RAM is initialized).

I More serious Coreboot patch.

I Manual analysis of Coreboot disassembly ensures that (at least)
xmm2�xmm7 have not been touched before patch code.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 15

http://puffin.eu.org

Registers on bootloader level

More serious code changes.

I All XMM registers except xmm0 were 0.

I XMM register xmm0 contained the same data on each boot, though
di�erent data for di�erent test machines.

I The data turned out to be some �ll-pattern of the BIOS code or
some CPUID depending on the test machine.

I The registers have been initialized/used before the OS was started!

Try registers on BIOS level:

I Need to use Coreboot to access BIOS code.

I Only speci�c main boards are supported out-of-the-box.

I Read XMM registers as early as possible (before RAM is initialized).

I More serious Coreboot patch.

I Manual analysis of Coreboot disassembly ensures that (at least)
xmm2�xmm7 have not been touched before patch code.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 15

http://puffin.eu.org

Registers on bootloader level

More serious code changes.

I All XMM registers except xmm0 were 0.

I XMM register xmm0 contained the same data on each boot, though
di�erent data for di�erent test machines.

I The data turned out to be some �ll-pattern of the BIOS code or
some CPUID depending on the test machine.

I The registers have been initialized/used before the OS was started!

Try registers on BIOS level:

I Need to use Coreboot to access BIOS code.

I Only speci�c main boards are supported out-of-the-box.

I Read XMM registers as early as possible (before RAM is initialized).

I More serious Coreboot patch.

I Manual analysis of Coreboot disassembly ensures that (at least)
xmm2�xmm7 have not been touched before patch code.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 15

http://puffin.eu.org

ASRock E350M1 with AMD E-350 APU

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 16

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.

Volume 1 of the AMD64 Architecture Programmer's Manual states:

Upon power-on reset, all 16 YMM/XMM registers are cleared
to +0.0. However, initialization by means of the #INIT
external input signal does not change the state of the
YMM/XMM registers.

Last chance:
Investigate the cache after power-on.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 17

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.
Volume 1 of the AMD64 Architecture Programmer's Manual states:

Upon power-on reset, all 16 YMM/XMM registers are cleared
to +0.0. However, initialization by means of the #INIT
external input signal does not change the state of the
YMM/XMM registers.

Last chance:

Investigate the cache after power-on.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 17

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.
Volume 1 of the AMD64 Architecture Programmer's Manual states:

Upon power-on reset, all 16 YMM/XMM registers are cleared
to +0.0. However, initialization by means of the #INIT
external input signal does not change the state of the
YMM/XMM registers.

Last chance:
Investigate the cache after power-on.

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 17

http://puffin.eu.org

Cache on BIOS level

I Use Coreboot since we need access to BIOS code.

I Print cache-as-RAM region to serial console before RAM is
initialized.

I Make sure cache-as-RAM is not nulled!
⇒ Coreboot patch

I Most data was 0,

I except for some data that had been stored to the stack previously.

I The cache has been initialized by hardware before BIOS code is
executed!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 18

http://puffin.eu.org

Cache on BIOS level

I Use Coreboot since we need access to BIOS code.

I Print cache-as-RAM region to serial console before RAM is
initialized.

I Make sure cache-as-RAM is not nulled!
⇒ Coreboot patch

I Most data was 0,

I except for some data that had been stored to the stack previously.

I The cache has been initialized by hardware before BIOS code is
executed!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 18

http://puffin.eu.org

Cache on BIOS level

I Use Coreboot since we need access to BIOS code.

I Print cache-as-RAM region to serial console before RAM is
initialized.

I Make sure cache-as-RAM is not nulled!
⇒ Coreboot patch

I Most data was 0,

I except for some data that had been stored to the stack previously.

I The cache has been initialized by hardware before BIOS code is
executed!

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 18

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:

On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:
It is not easy to publish a paper with negative results:

I Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:
It is not easy to publish a paper with negative results:

I Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:

It is not easy to publish a paper with negative results:

I Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:
It is not easy to publish a paper with negative results:

I Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:
It is not easy to publish a paper with negative results:

I Good news:

NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs5

I Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

I More bad news:
It is not easy to publish a paper with negative results:

I Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.4

I NIVIDA GPUs are programmed using the CUDA framework.

I Experiments with 17 GTX 295 chips
providing 17 · 30 · 16 KB = 8, 160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

antilles0, device 0, MP 0, 17 traces

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 20

http://puffin.eu.org

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12 14 16 18

Within-class hamming distance antilles2, device 0, MPs 0-29

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 21

http://puffin.eu.org

 0

 0.2

 0.4

 0.6

 0.8

 1

Between-class hamming distance

Physically unclonable functions found in standard PC components (PUFFIN) http://puffin.eu.org 22

http://puffin.eu.org

